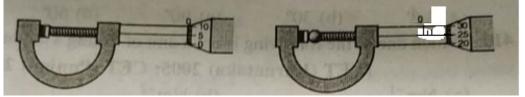
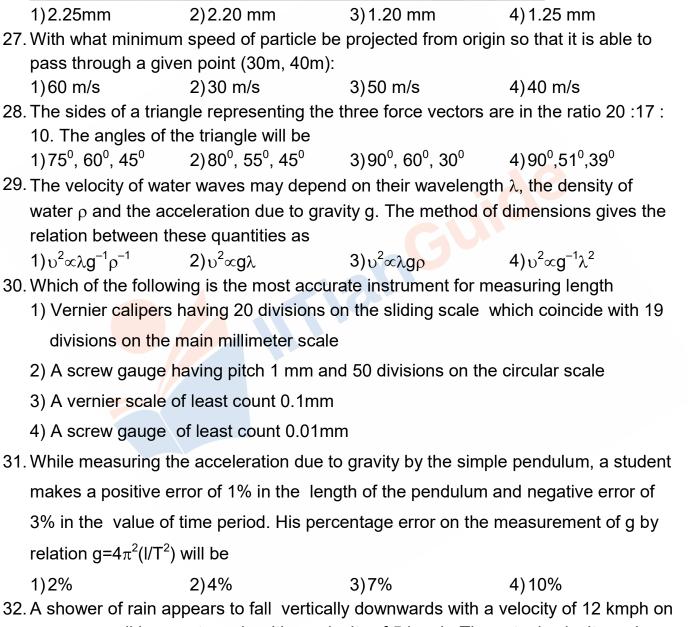


Preparing for JEE Exam ?

TALK TO AN IITIAN NOW

Get Personal Mentoring


www.iitianguide.com


-

1.	Let f : $R \rightarrow R$ be a function satisfies that				
	$3f(2x^2 - 3x + 5) + 2$	$2f(3x^2 - 2x + 4) = x^2 - 4$	$-7x + 9 \forall x \in R$ then t	he value of f(5) is	
	1)21/5	2)0	3)9/5	4)3	
2.				the period of $f(x)$ is	
_	1)3	2)5	3)2	4)4	
3.				5} so that the function	
	$f(x) = \frac{x^3}{3} + \frac{ax^2}{2} + bx + 10$ is	s an injective mappir	ng $\forall x \in R$ is		
	1)14	2)16	3)15	4)13	
4.	Let f be a function	defined on (–1, 1) as	$f(x) = \begin{cases} \frac{2^{\sin^{-1}x} - 2^{\tan^{-1}x}}{2^{\tan x} - 2^{\sin x}}, \end{cases}$	$x \neq 0$ and f(0) = K, then	
	the value of K such that $f(x)$ is continuous at $x = 0$ is				
	1)0	2)1	3) 1/2	4)log2	
5.	Let f : $R \rightarrow R$ be a	function defined by <i>f</i>	$f(x) = \begin{cases} 5x, & \text{if } x \in Q\\ x^2 + 6, & \text{if } x \in R - Q \end{cases}, $	Q is set of rational	
	numbers then f(x)3	;			
	1) Continuous ∀ xe		2) Discontinue		
_	3) Continu <mark>ous at</mark> x			s at x = 2, 3 only	
6.			y, then the value of y'	(0) is, where y' is	
	derivative of y w.r.t		0) 4	0.0	
7	1)0	2)-1	3)1	4)2	
7.	If $\sqrt{x+y} + \sqrt{y-x} = c$, the	n the value of $\frac{dy}{dx}$ is			
	1) $\frac{2x}{c^2}$	2) $\frac{2}{c^2}$	3)2x	4) $\frac{-4x}{c^2}$	
8.	3. Suppose $f(x)$ is a differentiable which satisfy $f(x + y) = f(x) + f(y) + x^2 \cdot y^2$ and				
	$Lt_{x\to 0} \frac{f(x)}{x} = 100, \text{ then } t$	the value of $f'(0)$ is			
	1)0	2)1	3)2	4)100	
9.	The value of $\lim_{\theta \to 0} \frac{\sin^2 \theta}{2}$	$\frac{\partial^{3}\theta - \tan^{3}\theta}{\partial^{5}}$ is			
	1)3/2	2)–2/3	3) 1/3	4)-3/2	
10. If $\lim_{x \to \infty} (a^x + e^x)^{\frac{1}{x}} = a, (a > 0)$ when $a \in C$					
	1)(1, ∞)	2)(e, ∞)	3)(1, e)	4)No such 'a' exist	

11. $\lim_{x \to 0} \left(\sin^2 \left(\frac{\pi}{2 - ax} \right) \right)^{\sec^2}$	$\frac{\pi^2}{2-bx} =$			
1) e^{a^2/b^2}	2)1	3)e	4)Doesn't exist	
12. The equation of the $y = 2t^2 - 2t - 5$ at 1		defined parametrica	$IIy x = t^2 + 3t - 8,$	
•	2)7x - 6y 20 = 0	3)2x - 3y - 7 = 0	4)7x - 6y - 8 = 0	
		-	B and has a horizontal	
	the area of triangle A			
1)5/2	2)10/3	3)15/2	4) 15/4	
14. The number of pos	sitive roots of $f(x) = x$	+ cosx – a is (where	a < 1)	
1)1	2)2	3)4	4)0	
15. If $f(x) = x^3 + 2x^2 + x$ G.I.F	c + 5 has only real roo	ot α then the value of	$[\alpha]$ is, where [.] is	
1)–1	2)-2	3)–3	4)-4	
16. The radius of a right	/	,	,	
-	at the rate 0.2 cm/min		and height is 3cm, the	
1)–2π	2)8π/5	3)-3π/5	4)2π/5	
17. A kite is at 15 mts height and 20mts string are out. The kite starts drifting away horizontally at the speed of 4Kmph. Then how much fast is string being released				
1)4	2) $\sqrt{7}$	3)2	4) √5	
18. If $2x^3 - 9x^2 + 12x +$	a = 0 has 3 real and	distinct roots then a	E	
	2)(0, 3)		4)(-5, 4)	
19. The function $f(x) = \frac{x}{\log_e^x}$ is decreasing in				
1)(e, ∞) 20.The maximum valu	2)(0, 1) ∪ (1, e) le of f(x) = x ² . e ^{-2x} , x >		4)(1, ∞)	
1)e ⁻²	2) $\frac{1}{2e}$	3) $\frac{1}{e}$	4) $\frac{1}{e^3}$	
21. The value of $\lim_{x\to\infty} \frac{\log_e(\log_e x)}{e^{\sqrt{x}}}$ is				
22. If the equation $x^3 + x^2 - 4 = 0$ has a solution in the minimum interval (a, b) where a, $b \in z$, then the value of a + b is				
23. If $y = \frac{x^4 + x^2 + 1}{x^2 + x + 1}$ such that $\frac{dy}{dx} = ax + b$ then the value of $a^2 + b^2$ is				
24. If $f(x) = 5x^3 - 15x^2 - 120x + 3$ is increasing in $(-\infty, a) \cup (b, \infty)$ and decreasing in				
(a, b) then the valu		ng in (−∞, a) ⊖ (b, ∞		

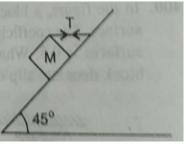
- 25. The number of critical points of $f(x) = \begin{cases} x^{3/5}, & \text{if } x < 1 \\ 2 x^2, & \text{if } x \ge 1 \end{cases}$ is
- 26. The number of divisions on circular scale of shown screw gauge are 50. It moves 0.5mm on main scale in one rotation. The diameter of the ball is

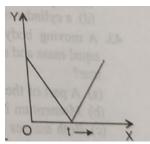
- a person walking west wards with a velocity of 5 kmph. The actual velocity and direction of the rain are 2) 13 kmph, anticlockwise to vertical
 - 1) 7.5 kmph, clockwise to vertical

3) 13 kmph, clockwise to vertical

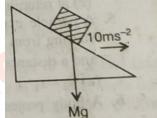
4) 17 kmph, clockwise to vertical

- 33. In the graph shown in the following figure x-axis represents time. The y-axis could represent
 - 1) Speed of a body projected under gravity
 - 2) Velocity of a body projected under gravity
 - 3) Acceleration of a body projected under gravity
 - 4) Distance travelled by a body projected under gravity
- 34. Person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of 0.5 ms⁻¹ at an angle of 120⁰ with the direction of flow of water. The speed of water in the stream is
- $1)1 \text{ ms}^{-1}$ $2)0.25 \text{ ms}^{-1}$ $3)0.67 \text{ ms}^{-1}$ 35. A block of mass M is placed on an inclined plane of inclination 45[°] with horizontal. The inclined plane moves horizontally with an acc. Of 10 ms⁻² as shown in the figure. If acc. Due to gravity is 10 ms⁻² the block will
 - 2) Move downwards along the plane 1) Move upwards along the plane


4) Be at rest on the plane 3) Be thrown away from the plane


- 36. The relation between the time t and distance x is given by $t=px^2+qx$. Where p and q are constants. The relation between velocity v and acceleration a will be 1)a∝ບ³ 2)a∝υ² 3)a∝υ⁴ 4)a∝υ
- 37. A car travelling on a level road cannot have an acceleration greater in magnitude than (μ is coefficient of friction) 4)g/μ

1)
$$\mu$$
g 2) μ^2 g 3)G


38. Two particles are projected from the ground from same point simultaneously with speeds 20 m/s and $20/\sqrt{3}$ m/s at angles 30° and 60° with the horizontal in the same direction. The maximum distance between them till both of them, strike the ground is approximately : $(g=10 \text{ m/s}^2)$ 1)23.1 m 2)16.4 m 3)30.2 m 4) 10.4 m

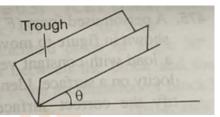
4) 1/4

$$4)3 \text{ ms}^{-1}$$

40. Water falls from a tap at a height H above the floor of a cylindrical vessel of area of cross section S at a constant rate V m³/sec. If the density of water is ρ. The force F acting on the bottom of cylindrical vessel after a time t sec when the tap is operated will be (h is height of water in vessel after time t)

1)
$$vt\rho g + V\rho \sqrt{[2g(H-h)]}$$

$$3) V \rho t \sqrt{[2g(H-VS)]}$$


2) $Vt\rho g$ 4) $V\rho gt\sqrt{(2gH)}$

41. A block is dragged on a smooth plane with the help of a rope which moves with a velocity υ as shown in figure. The horizontal velocity of the block is

2) $\frac{\upsilon}{\sin\theta}$ 3)υ sinθ

42. A block of mass m slides in an inclined right angled trough as shown in the figure if the coefficients of kinetic friction between block and material composing the trough is μ_k . Find the acceleration of the block

4)
$$\frac{\upsilon}{\cos\theta}$$

4) $30^{\circ} + \tan^{-1}(2\sqrt{3})$

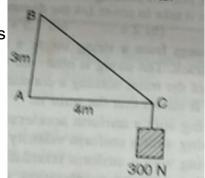
d

4) $\frac{d}{d}$

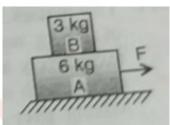
$$(\sin\theta - \sqrt{2}\mu_k \cos\theta) \quad 2) g(\sin\theta - \mu_k \cos\theta) \quad 3) g(\sin\theta - 2\mu_k \cos\theta) \quad 4) g(\sin\theta - \sqrt{\mu_k} \cos\theta)$$

43. A particle is projected with a certain velocity at an angle α above the horizontal from the foot of an inclined plane of inclination 30°. IF the particle strikes the plane normally the α is equal to

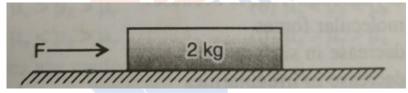
1)
$$30 + \tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 2) 45° 3) 60°


44. Two particles are projected simultaneously from two points O and O` such that d is the horizontal distance and h is the vertical distance between them as shown O in the figure. They are projected at the same inclination α to the horizontal with the same velocity υ . The time after which their separation becomes minimum is

1)
$$\frac{d}{v \cos \alpha}$$
 2) $\frac{2d}{v \cos \alpha}$ 3) $\frac{d}{2v \cos \alpha}$


45. Two cars A and B are travelling in the same direction with velocities V_A and V_B ($V_A > V_B$). When the car A is at a distance s behind the car B, the driver of the car A applies the brakes producing a uniform retardation a; there will be no collision when

1)
$$s < \frac{(V_A - V_B)^2}{2a}$$
 2) $s = \frac{(V_A - V_B)^2}{2a}$ 3) $s \ge \frac{(V_A - V_B)^2}{2a}$ 4) $s \le \frac{(V_A - V_B)^2}{2a}$


- 46. If the velocity of projection of a body is increased by 1percent, other things remaining constant, the horizontal range will increase by x% then find x
- 47. A body of mass 1 kg crosses a point O with a velocity 60 ms⁻¹. A force of 10N directed towards O begins to act on it. It will again cross O in time t seconds then find t
- 48. In the adjoining figure, AB, BC and AC are light metallic rods hinged at B. The tension on the rod BC is in newtons will be

49. Two blocks A and B of masses 6 kg and 3 kg rest on a smooth horizontal surface as shown in the figure. If coefficient of friction between A and B is 0.4, the maximum horizontal force which can make them without separation will be x newtons then find x

50. A block of mass 2 kg is placed on the floor. The coefficient of static friction is 0.4. A force of 2.8 N is applied on the block as shown in figure. The force of friction between the block and the floor is (Take g= 10 ms⁻²)

51. The angular momentum of an electron in a Bohr's orbit of He⁺ is 3.1652 × 10⁻³⁴ Kg-m²sec. What is the wave number in terms of Rydberg constant (R) of the spectral line emitted when an electron falls from this level to the first excited state.

	- 1)3R	2)5R/9	3)3R	/4 4)8R/9
52.		Column – I		Column – II
	A)	Solvey process	P)	NaCl
	B)	Evolve $CO_2 \uparrow$ on heating	Q)	Na ₂ O ₂
	C)	Aq. Soln. is neutral towards litmus	R)	NaHCO ₃
	D)	Oxone	S)	Na ₂ CO ₃
	1) A-S, B-R, C-P, D-Q		-	2) A-S, B-R, C-Q, D-P
	3) A-Q, B-R, C-P, D-Q		4) A-R, B-Q, C-P, D-S	

[use h = 6.626×10^{-34} J.s]

	53. If water samples are taken from sea, rivers or lake, they will be found to contain				
		gen in the approxima			
	 Multiple proport Reciprocal prop 		2) Definite p	•	
	54. Which of the follow		4) All of thes		
	1)LaH ₂₅	2)CaH ₂		4)LiBH₁	
		,	,	energy changes from x	
		e in potential energy			
	1) $+\frac{3}{2}x$	2) $-\frac{3}{8}x$	3) $+\frac{3}{4}x$	4) $-\frac{3}{4}x$	
	56. The Li^+ ion, though	n smallest in size is tl	he poorest conducto	or of electricity as	
	-	alkali metal ions in a	-		
	1) Its smaller ionic		•	ectropositive character	
	3) Its larger degree	•	, -	elting and boiling points	
	57. Beryllium chloride mixture of	can be prepared by	passing chionne vap	ours over neated	
		2)BeCO $_3$ and C	3)Beo and C	4) Be(OH) ₂ and C	
	58.1 mole of Ba(OH) ₂		-		
		2)1 mole of H ₂ SO		0 ₃ 4)All	
	59. Photochemical oxi	dants such as PAN i	s formed		
		-	-	presence of sunlight	
		carbondioxide on hy		he presence of sunlight	
	1)A	2)B	3)B & C		
	,		,	imes of motor vehicles is	
	1)Hg	2)As	3)Pb	4) NO ₂	
	61. The irritant red haz	ze in the traffic and c	ongested places is o	due to	
	1)Oxides of S	2)Oxides of N	3)Oxides of C	4) Oxides of P	
	62. The strength of 20	volume of H_2O_2 is			
	, 0	2)60 g/litre	, 0	4)20 g/litre	
	63. The gas which is c	, ,			
	1)H ₂ S	$2)SO_2$	$3)CO_2$	$4)NO_2$	
			ater, the Call and Mg	g ²⁺ ions present in hard	
 water are rendered ineffective by 1) Sodium silicates 3) Mixture of silica and ammonia 4) Aquaregia 			2) Sodium poilyme	poilymetaphosphate	
			staphoophato		
	65 . If a_0 be the radius of first Bohr's orbit H-atom, the de-Broglie's wavelength of an			e's wavelength of an	
	electron revolving in the second Bohr's orbit will be				
	1)6πa ₀	2)4πa ₀	3)2πa ₀	4)πa ₀	

66.44 g of a sample on complete combustion gives 88 gm CO_2 and 36 gm of H ₂ O. the				
molecular formula of the compound may be				
1) C ₄ H ₆	$2)C_2H_5O$	$3)C_2H_4O$	$4)C_{3}H_{5}O$	
67. The pair of chemi	cals that maintain hea	it balance in troposph	ere are	
1) N ₂ , O ₂	2) H_2O , NO^+	3)CO ₂ , O ₂ ⁺	4) O ₃ , O ⁺	
68. The formula of ex	nausted permutit is			
1) CaAl ₂ Si ₂ O ₈ . xH ₂ O		2) Na ₂ Al ₂ Si ₂ O ₈ . xH ₂ O		
3) $CaB_2Si_2O_8.xH_2O$		4) $K_2AI_2Si_2O_8.xH_2O$		
69. Gases responsible for acid rain are				
1) NO, CO ₂	2)NO ₂ , SO ₂	3)CO, CO ₂	4)CO, SO ₂	
70. The total spin resulting from a d ⁷ configuration is				
1)3/2	2) 1/2	3)2	4)1	
71. The COD value of a water samples is 40 ppm. Calculate the amount of $K_2Cr_2O_7$				

(M.W=294)required to oxidize the organic matter present in 500 ml of that water sample

- 72. If the number of values of m is seven, the value of azimuthal quantum number should be
- 73.0.2 mole of HCl and 0.2 mole of barium chloride were dissolved in water to produce a 500 mL solution. The molarity of the Cl⁻ ions is
- 74. If the value of (n + l) is more than 3 and less than 6, what will be the possible number of orbitals
- 75. When 10ml of 5M H₂O₂ aqueous solution is decomposed at STP. Volume of oxygen obtained is

THE END