

Preparing for JEE Exam?

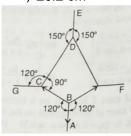
TALK TO AN IITIAN NOW

Get Personal Mentoring

www.iitianguide.com

JEE MAINS TEST SERIES

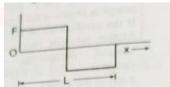
Time: Marks:


1. A speherometer has a least count of 0.005 mm and its head scale is divided into 200 equal divisions. The distance between consecutive threads on the spherometer screw is

- 1) 0.005 mm
- 2) 1.0 mm
- 3) 1.0 cm
- 4) 0.0025 mm

2. The length of a strip measured with a metre rod is 10.0 cm. Its width measured with a vernier calipers is 1.00 cm. The least count of the metre rod is 0.1 cm and that of vernier calipers is 0.01 cm. What will be error in its area?

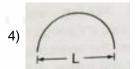
- 1) $\pm 0.01 \text{ cm}^2$
- 2) $\pm 0.1 \text{ cm}^2$
- 3) ± 0.11 cm²
- 4) $\pm 0.2 \text{ cm}^2$


3. The adjacent figure is the part of a horizontally stretched net. Section AB is stretched with a force of 10N. The tensions in the sections BC and BF are

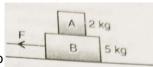
- 1) 10N,11N
- 2) 10N,6N
- 3) 10N, 10N
- 4) Cant be calculate d due to insufficient data

4. To a man walking at the rate of 3km/h the rain appears to fall vertically. When he increases his speed to 6 km/h it appears to meet him at an angle of 45⁰ with vertical. Find the velocity of rain.

- 1) 3*kmph*
- 2) 5kmph
- 3) $3\sqrt{2}kmph$
- 4) $5\sqrt{2}kmph$
- 5. A person used force (F) shown in the figure to move a load with constant velocity on a surface. Identify the correct surface profile



6. Blocks A and B in the figure are connected by a bar of negligible weight. If A=B=170 kg and μ_{A} =0.2 and μ_{B} =0.4, where μ_{A} and μ_{B} are the coefficients of limiting friction between blocks and plane calculate the force on the bar:(g=10 m/sec²)


- 1) 150 N
- 2) 75 N

- 3) 200 N
- 4) 250 N

7. A homogeneous chain of length L lies on a table. The coefficient of friction between the chain and the table is μ . The maximum length which can hang over the table in equilibrium is

- 1) $\left(\frac{\mu}{\mu+1}\right)L$
- 2) $\left(\frac{1-\mu}{\mu}\right)L$
- 3) $\left(\frac{1-\mu}{1+\mu}\right)L$
- 4) $\left(\frac{2\mu}{\mu+1}\right)L$

8. Two blocks A(2 kg) and B(5 kg) rest one over the other on a smooth horizontal plane. The coefficient of static and dynamic friction between A and B is the same and is equal to 0.60. The maximum horizontal force that can be applied to B in order that both a and B donot have relative motion is

1) 4.2 N

- 2) 4.2 kgf
- 3) 5.4 kgf
- 4) 1.2 N

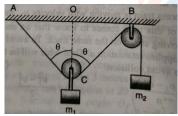
9.	Pulleys and strings are n smooth.What is the acce	nassless. The horizontal seleration of the block?	urface is			
				A m O		
				F		
	1) $\frac{2F}{}$	2) $\frac{F}{4m}$	3) $\frac{F}{m}$	4) $\frac{F}{2m}$		
10.	m	4m pulled from a table without		² 2m		
10.		e is a equal and opposite re				
		rrect and R is the correct of				
		rrect but R is not the corre				
4.4	3) If A is correct but R is	incorrect	4) If A is incorrect but R			
11.	1) Increases	on the balance. When the	cap is opened, then the w creases	eignt		
	3) First increases, then of		mains same			
12.	An open carriage in good	ds train is moving with a u		n. If the train adds water with		
		of 10 kg s ⁻¹ , then the addit	ional force is applied by e	ngine to maintain the same		
	velocity is 1) 72 N	2) 10 N	3) 720 N	4) 200 N		
13.		pace sweeps stationary in				
	acceleration of the satell	ite is				
	1) $-2\alpha v^2/M$	2) $-\alpha v^2/M$	3) $-\alpha v^2/2M$	4) $-\alpha v^2$		
14.				ing with velocity 153 km/h. it will strike the jeep of the thie		
	is	muzzie velocity or 100 m/s	s. The velocity with which	it will strike the jeep of the time		
	1) 150 m/s	2) 27 m/s	3) 450 m/s	4) 250 m/s		
15.	A cart is moving horizontally along a straight line with constant speed 30 ms ⁻¹ . A projectile is to be fired from, the moving cart in such a way that it will return to the cart after the cart has moved 80 m. At what speed (relative to the cart) must the projectile be fired? (Take g=10 m/s ²)					
	1) 10 m/s	2) $10\sqrt{8}m/s$	3) $\frac{40}{3}m/s$	4) None of these		
16.		the upward direction making the time after which its in 2) 10.98 s	ng an angle of 60º with the	e horizontal direction with a ntal is 45 ⁰ is 4) 2.745 s		
17.	A river is of width 120m	which flows at a speed of 8	3ms ^{–1} . If a man swims wi	th a speed of 5ms ⁻¹ at an		
		ream, his drift on reaching		•		
	1) 50 m	2) 150 m	3) 200 m	4) 300 m		
18.	A particle is projected with a speed ν at 45° with the horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height h is					
	1) Zoro	2) $\frac{mvh^2}{\sqrt{2}}$	$\frac{mvh}{}$	mvh^3		
	1) Zero	$\frac{2}{\sqrt{2}}$	3) $\frac{mvh}{\sqrt{2}}$	$\frac{4}{\sqrt{2}}$		
19.	Time taken by the project distance AB is equal to	ctile to reach from A to B is	s t. then the	B		
				60°		

1)
$$\frac{ut}{\sqrt{3}}$$
 2) $\frac{\sqrt{3}ut}{2}$

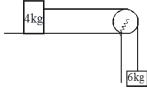
3) $\sqrt{3}ut$ 4) 2*ut*

A body is projected with velocity υ at an angle θ with horizontal then the radius of curvature at point of 20. projection is

1)
$$\frac{v^2 \cos^2 \theta}{g}$$


2)
$$\frac{v^2}{g\cos\theta}$$

3)
$$\frac{v^2}{g}$$


4)
$$\frac{v^2}{g\sin\theta}$$

- A plane surface is inclined making an angle β above the horizon. A bullet is fired with the point of projection at the bottom of the inclined plane with a velocity u; then the maximum range is given by

- 2) $\frac{u^2}{g(1+\sin\beta)}$ 3) $\frac{u^2}{g(1-\sin\beta)}$ 4) $\frac{u^2}{g(1+\cos\beta)}$
- From the top of a tower 19.6 m high, a ball is thrown horizontally. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, then the initial velocity of the ball is
 - 1) 9.8 ms⁻¹
- 2) 4.9 ms⁻¹
- 3) 14.7 ms⁻¹
- 4) 2.8 ms⁻¹
- A body is projected at 30° with the horizontal. The air offers resistance in proportion to the velocity of the 23. body. Which of the following statements is correct?
 - 1) The trajectory is a symmetrical parabola
 - 2) The time rise to the maximum height is equal to the time of return to the ground
 - 3) The velocity at the highest point is directed along the horizontal.
 - 4) The sum of the kinetic and potential energies remains constant
- A point moves with uniform acceleration and v_1, v_2 and v_3 denote the average velocities in three successive intervals of time t₁,t₂ and t₃. Which of the following relations is correct
 - 1) $(\upsilon_1-\upsilon_2)$: $(\upsilon_2-\upsilon_3)=(t_1-t_2)$: (t_2+t_3)
- 2) $(\upsilon_1-\upsilon_2)$: $(\upsilon_2-\upsilon_3)=(t_1+t_2):(t_2+t_3)$
- 3) $(\upsilon_1-\upsilon_2)$: $(\upsilon_2-\upsilon_3)=(t_1-t_2):(t_1-t_3)$
- 4) $(\upsilon_1-\upsilon_2)$: $(\upsilon_2-\upsilon_3)=(t_1-t_2):(t_2-t_3)$
- The acceleration experienced by a moving boat after its engine is cut off, is given a = $-kv^3$, where k is a constant if v_0 is the magnitude of velocity at cut off, then the magnitude of the velocity at time t after the cut off is
- 2) $\frac{v_0}{1+2ktv_0^2}$ 3) $\frac{v_0}{\sqrt{1-2ktv_0^2}}$ 4) $\frac{v_0}{\sqrt{1+2ktv_0^2}}$
- 26. A car starts from rest, moves with an acceleration a and then decelerates at a constant rate b for some times to come to rest if the total time taken is t. The maximum velocity of car is given by $n \times \frac{abt}{(a+b)}$ then
- A particle located at x=0, at time t=0, starts moving along the positive x-direction with a velocity υ that varies $v = \alpha \sqrt{x}$. The displacement of the particle varies with time as tⁿ then the value of n is
- In the arrangement shown in the figure if v_1 and v_2 are instantaneous velocities of masses m_1 and m_2 28. respectively and angle ACB=20 at that instant, if $\theta = \cos^{-1}\left(\frac{v_2}{nv_1}\right)$ then find n

- A train of 150 m length is going towards north direction at a speed of 10 ms⁻¹. A parrot flies at a speed of 5 ms⁻¹ towards south direction parallel to the railway track. Then find the time taken by the parrot to cross the train (in seconds)
- 30. If the force exerted by string on the pulley in newtons is $n \times \sqrt{2}$ then find $n (q=10 \text{ms}^{-2})$

- A: A body can have acceleration even if its velocity is zero at given instant of time
 - **R**: A body is momentarily at rest when it reverses its direction of motion
 - 1) If both A and R are correct and R is the correct explanation of A
 - 2) If both A and R are correct but R is not the correct explanation of A
 - 3) If A is correct but R is incorrect

- 4) If A is incorrect but R is correct
- 32. The position vector of a particle is $\vec{r} = (a\cos\omega t)i + (a\sin\omega t)j$ the velocity of the particle is
 - 1) Parallel to position vector
- 2) Perpendicular to position vector
- 3) Directed towards origin

4) Directed away from the origin

33.	A body falling freely from a given height H hits on an inclined plane in its path at a height h. As a result of						
	this impact, the direction of velocity becomes horizontal. For what value of h/H, the body will take						
	maximum time to reach the ground						
	1) $\frac{3}{4}$	2) $\frac{1}{2}$	3) $\frac{1}{4}$	4) $\frac{2}{3}$			
34.	A parallelogram formed with \vec{a} and \vec{b} as the sides . Let $\overrightarrow{d_1}$ and $\overrightarrow{d_2}$ be the diagonals of the parallelogram						
	Then a ² +b ² =						
	1) $d_1^2 + d_2^2$	2) $d_1^2 - d_2^2$	3) $(d_1^2 + d_2^2)/2$	4) $(d_1^2 - d_2^2)/2$			
35.	The dimensions of the permittivity ϵ_0 are						
	1) $[M^{-1}L^{-3}A^2T^4]$	2) $[M^{-1}L^3A^{-2}T^{-4}]$	3) $[M^{-1}L^{-1}A^2T^2]$	4) $[M^{-1}L^{-3}A^2T^{-4}]$			
36.	A vector \overrightarrow{Q} which has a magnitude of 8 is added to the vector \overrightarrow{P} which lies along x-axis. The resultant of two vectors lies along y-axis and has magnitude twice that of P. The magnitude \overrightarrow{P} is						
	1) $\frac{6}{\sqrt{5}}$	2) $\frac{8}{\sqrt{5}}$	3) $\frac{12}{\sqrt{5}}$	4) $\frac{16}{\sqrt{5}}$			
37.	The percentage errors in the measurement of mass and speed are 2% and 3% respectively. How much will be the maximum error in the estimate of kinetic energy obtained by measuring mass and speed?						
	1) 11%	2) 8%	3) 5%	4) 4%			
38.	The sum of two forces acting at a point is 16 N. If the resultant force is 8N and its direction is						
	perpendicular to minimum force, then the forces are						
	1) 6N and 10N	2) 8N and 8N	3) 4N and 12 N	4) 2N and 14 N			
39.	The length and breadth of a rectangle are $(5.7\pm0.1)x=cm$ and $(3.4\pm0.2)cm$ the area of rectangle with error						
	limits is approximately	s is appro <mark>ximately</mark>					
	1) (198.4±1)cm ²	2) (19.4±2)cm ²	3) (19.4±2.5)cm ²	4) (19.4±1.5)cm ²			
40.	The mean time period of second' pendulum is 2.00 s and mean absolute error on the time period is 0.05						
	s. To expres <mark>s maximum estimate error, the time period should be written as</mark>						
	1) (2.00±0.01)s	2) (2.00±0.025)s	3) (2.00±0.05)s	4) (2.00±0.10)s			

THE END